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LARGE DEFLECTION AND LARGE-AMPLITUDE FREE VIBRATIONS OF'

LAMINATED COMPOSITE-MATERIAL PLATES

J. N. REDDY+ and W. C. CHAO

School of Aerospace, Mechanical, and Nuclear Engineering,
The University of Oklahoma

Norman, OK 73019

Abstract - Finite-element analysis of the larg-deflection ory (in

von Karman's sense), including transverse shear, governing moderately

thick, laminated anisotropic composite plates is presented. Linear and

quadratic rectangular elements with five degrees of freedom (three dis-

placements, and two shear rotations) per node are employed to analyze

rectangular plates subjected to various loadings and edge conditions.

Numerical results for bending deflections, stresses, and natural frequen-

cies are presented showing the parametric effects of plate aspect ratio,

side-to-thickness ratio, orientation of layers, and anisotropy.

1. INTRODUCTION

In the finite-element analysis of nonlinear problems the geometric

stiffness matrix is reformulated several times during each load step

(also, during each time step in the transient analysis), consequently,

the computational time involved is very large. Further, if the element

used in the analysis has many degrees of freedom, storage considerations

may preclude the use of such elements. These concerns are reflected in

current research in computational mechanics, which is largely concerned1Starting Fa11'80: Professor, Engineering Science and Mechanics Department,
Virginia Polytechnic Institute and State University,
Blacksburg, VA, 24061.

*Graduate Assistant.



with the development of numerical schemes that are computationally inexpen-

sive but possess competitive accuracy when compared to traditional schemes.

Due to their high stiffness-to-weight ratio, and the flexible aniso-

tropic property that can be tailored through variation of the fiber orien-

tation and stacking sequence, fiber-reinforced laminated composites are

finding increasing application in many engineering structures. Plates

are common in many engineering structures, and therefore have received

greater attention of the designer.

Much of the previous research in the analysis of composite plates is

limited to linear problems (see, for example, [1-15]), and many of them

were based on the classical thin-plate theory (see [1-3]), which neglects

the transverse shear deformation effects. The transverse shear effects

are more pronounced, due to their low transverse shear modulus relative to

the in-plane Young's moduli, in filamentary composite plates than in iso-

tropic plates. The shear deformable theory of Yang, Norris, and Stavsky

[16] (see also, Whitney and Pagano [17]), which is a generalization of

Mindlin's theory for homogeneous, isotropic plates to arbitrarily laminated

anisotropic plates, is now considered to be adequate for predicting the

overall behavior such as transverse deflections and the first few natural fre-

quencies of layered composite plates. Finite-element analysis of rectan-

gular plates based on the Yang-Norris-Stavsky (YNS) theory is due to

Reddy [15,18 who derived the YNS theory from the penalty function method

of Courant [19]. A comparison of the closed-form solutions [17] with the

finite-element solutions [14,15] shows that the element predicts accurate

solutions (see also [20]).
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Approximate solutions to the large-deflection theory (in von Karman's

sense) of laminated composite plates were attempted by Whitney and Leissa

C21], Bennett C22], Bert [23], Chandra and Raju C24,25], Zaghloul and Kennedy

[26], Chia and Prabhakara [27,28], and Noor and Hartley [29]. Chandra and

Raju £24,25], and Chia and Prabhakara [27,28] employed the Galerkin method

to reduce the governing nonlinear partial differential equations to an

ordinary differential equation in time for the mode shape; the perturbation

technique was used to solve the resulting equation. Zaghloul and Kennedy

[26] used a finite-difference successive iterative technique in their analy-

sis. In all of these studies, the transverse shear effects were neglected.

The finite element employed by Noor and Hartley [29] includes the effect of

transverse shear strains; however, it is algebraically complex and involves

eighty degrees of freedom per element. Use of such elements in the nonlinear

analysis of composite plates inevitably leads to large storage requirements

and computational costs.

The present paper is concerned with the large-deflection bending and

large-amplitude free vibrations of laminated composite plates. The finite

element used herein is a rectangular element based on the extended YNS

theory (i.e., the transverse shear deformation is included) that includes

the effect of large deflections (in the von Karman sense). The element has

three displacements and two shear rotations per node and results in a 20 by

20 stiffness matrix for linear element and a 40 by 40 matrix for an eight-

node quadratic element. Numerical results are presented for deflections,

stresses, and natural frequencies of rectangular plates for various edge

conditions.

I
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2. GOVERNING EQUATIONS OF MODERATELY THICK PLATES ACCOUNTING

FOR LARGE DEFLECTIONS

Consider a plate laminated of thin anisotropic layers, oriented

arbitrarily, and having a total thickness h. The origin of the coordinate

system (x,y) is taken in the middle plane, denoted R, of the plate with

the z-axis perpendicular to the plane of the plate. The thick plate

theory of Whitney and Pagano [17] is modified here to include the non-

linear terms of the von Karman theory. The displacement field is assumed

to be of the form,

u1(x,y,z,t) : u(x,y,t) + z *x(x,y,t) ,

u2(x,y,zt) = v(x,y,t) + z y (X,y,t) , (2.1)

u3(x,y,z,t) = w(x,y,t)

Here t is the time; u1, u2, u3 are the displacements in x, y, z directions,

. respectively; u, v, w are the associated midplane displacements; and * and

Iy are the slopes in the xz and yz planes due to bending only. Assuming

that the plate is moderately thick and strains are much smaller than

rotations, we write the nonlinear strain-displacement relations 2C..
i3

ui~j + ujl i + UmliUm,,

au + z + I W)2  0 + zK 1

£2 El22_ v '' aw2=~3+ zy 2'(T' 22 + ZX2

2- a
£6 2 + - + (- + 1 --) - + Z 2

3y a x aw awe6 E 2el2= T(y +----ax axa

6 + zK6 ,
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3 "
= £33 + 2 £2 + 2 .+  (.

y axy ay (2.2)

wherein the products of 0 and iy with aul/ax and au2/3y are neglected.x y
Since the constitutive relations are based on the plane-stress assumption,

e3 does not enter the formulation.

Neglecting the body moments and surface shearing forces, one can write

the equations of motion (in the absence of body forces) as

+ N =Ru + SOx '

I,x 6,y ,tt tt

N + N2 , = Rvtt + SIP

QIx + Q2 ,y = P + Rwtt- ;v(Ni w) (2.3)

,x M Q, = lx,tt + SU,tt

M6,x + M2,y Q2 = Iy,tt + Sv tt

where R, S, and I are the normal, coupled normal-rotary, and rotary in-

ertia coefficients,
Si h/2 : zm+l pm

(R,S,I) h/2 (l,z,z2 ) pdZ = (l,z,z 2) W dz (2.4)
h/2 m fzm

W(m) being the material density of the m-th layer, P is the transversely
distributed force, and Ni, Qi' and Mi are the stress and moment resultants

defined by

(Ni'Mi) ".h/2 (lz) a i dz , (QQ2) = ,.h/2 (a xza yz) dz (2.5)
-h/2 -h/2

- Here ai (i - 1,2,6) denote the in-plane stress components (a, - ax' C2 =

y' 14 a yz' 5  xz and a6  xy ). The nonlinear operator N(.) in eqn. (2.3)

is given by,

1' (W,N1)., (N, 2) + -L (N. Lw) + -L (N,, Lw. + -L (N.2 1)waaw
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Assuming monoclinic behavior (i.e., existence of one plane of elastic

symmetry parallel to the plane of the layer) for each layer, the constitutive

equations for the m-th layer (in the plate coordinates) are given by

a2 = Q(l '] £ , ,(2.6)

)T 6 £) asL Q4) Qs)i £5S

where Q.m) are the stiffness coefficients of the m-th layer in the plate

coordinates. Combining eqns. (2.5) and (2.6), we obtain the plate consti-

tutive equations,

N. [L, F 4 k ~ kA4 E4
I I (2.7)

M _Bji Q ij j[ kt k5A45 k2ASS -

The Aij, 8ij, Dij (i,j = 1,2,6), and Aij (I,j 4,5) are the respective

inplane, bending-inplane coupling, bending or twisting, and thickness-

shear stiffnesses, respectively:

(AijBi 0 Di) = Qi (1,zz 2 )dz A QiW dz. (2.8)
m zm  m z m

Here z denotes the distance from the mid-plane to the lower surface of

the m-th layer.

Equations (2.3) and (2.7) must be adjoined by appropriate boundary

conditions of the problem. The variational formulation of these equations

indicate the following essential and natural boundary conditions:

essential: specify, un , us , w n(2.9)

natural: specify, Nn, Nns, q, Mn, Mns.

n'ns
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3. VARIATIONAL FORMULATION

Toward constructing a finite-element model of eqns. (2.3), (2.7),

and (2.9), we present a (quasi-) variational formulation of these equa-

tions. The total potential energy principle for the problem at hand

takes the form,

0 = Sr(u,v,W,,y) = f 6u[Ru,tt + Sx,tt - N1,x - N6,Y]

R

Sdv[Rv~tt + Sy,tt - N N2,y]

+ SwCP + Rwtt - Q Q - i(wNi)]

+ dipx[Itxtt + Su,t t - M x  M6'y + Q1J

+ yEIy,tt + Svt - M ,X  M2,y + Q} dxdy,

f {Su(Ru,tt + Sx,tt) + du,xN , + Su + v(Rv, + SIP

R

+ 6v N + dv yN2 + Sw(P + Rwtt) + dW Q + 3W Q

+dw Iw NI + 16w Nr + 3dw 'WN6 + 3 6.w 2w N.3x x gx ;y y

+ dwx( Ix,tt + Sutt) + dipxM 1 + 4 x,yM6 + xQ1

+ p(4 t + Svt + ys M + S M + S y Q ' dxdy

N ^ds + (S6 YM, +y6P2d2+ fCn nn + 6Usns)ds + Cq wqds + I nn )ds ,

n q m (3.1)

wherein quantitites with A' are specified on the respective portions of

the boundary C, and Cn , Cq and Cm are respectively the (possibly overlapping)

portions of the boundary on which Nn and Nns' q, and Mn and Mns are specified.

It should be noted that on the complements of these portions (i.e., onI C-Cn , C-Cq, and C-C ) the in-plane displacements un , and Uns transverse

deflection w, and shear rotations In and ons' respectively, are specified.
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4. FINITE-ELEMENT MODEL

Now we presert a finite-element model based on the variational form

in Eqn. (3.1). Suppose that the region R is divided into a finite number

of rectangular elements. Over each element the generalized displacements

(uqvW,*x, y) are interpolated by

r 1 r I s 2
u = E u i i , v = I viz i , w = E wii i i

p 3 p 3 (4.1)x =  xi~ i , y = o

1 1

where * (a = 1,2,3) is the interpolation function corresponding to the

i-th node in the element. Note that the in-plane displacements, the trans-

verse displacement, and the slope functions are approximated by different

sets of interpolation functions. While this generality is included in the

formulation (to indicate the fact that such independent approximations are

possible), we dispense with it in the interest of simplicity when the ele-
1 2 3

ment is actually programmed and take €i = i = i (r = s = p). Here r,

s, and p denote the number of degrees of freedom per each variable. That

is, the total number of degrees of freedom per element is 2r + s + 2p.

Substituting eqn. (4.1) into eqn. (3.1), we obtain

[K][A} = W2 [M]{.} + {F} (4.2)

For static bending, eqn. (4.2) becomes

[K11] [K12] [0] [K14] [K1 5] {u} (FI}

[K12] [K22] [0] [K24] [K25] {v} fF2 }

[0] [0] [K33] [K34I] [K35] {w} {F3) (4.3)

[K14] [K24] [K34] [K44 ] [K45] {Ix}  (F4 }

L[K ]5] [K25] [K35] [K45 ] [K55] e y {F5} e
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where the (ul, {v}, etc. denote the columns of the nodal values of u, v, etc.

respectively, and the elements Kij (ca = 1,2,...,5) of the stiffness matrixii
and F of the force vector can be identified easily from eqn.(3.l).

In the present study rectangular elements with four, eight, and nine

nodes are employed with the same interpolation for all of the variables.

The resulting stiffness matrices are 20 by 20 for the 4-node element and

40 by 40 for the 8-node element.

As pointed out in a recent study [15], the YNS theory can be derived

from the corresponding classical thin-plate theory by treating the slope-

displacement relations
w = -e x , LW = -e (4.4)
x a y y

as constraints. Indeed, when the constraints in eqn. (4.4) are incorporated

into the classical thin-plate theory by means of the penalty-function method,

the resulting equations correspond to the YNS theory with the correspondence,

ex P ' 6y ~ y (4.5)

It is now well-known that whenever the penalty-function method is used,

the so-called reduced integration (see Zienkiewicz et al. [30], and Reddy [20])

must be used to evaluate the matrix coefficients in eqn. (4.3). That is,

if the four-node rectangular element is used, the 1 x 1 Gauss rule must be

used in place of the standard 2 x 2 Gauss rule to numerically evaluate the

coefficients Kij. The element equations in (4.2) are assembled in the usual

manner, and the (essential) boundary conditions are imposed before solving

either for generalized displacements, or for frequencies of natural vibration.

It should be noted that, since the stiffness matrix [K] depends on the

solution (A}, any one of the standard iterative procedures must be used.

Ak
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5. NUMERICAL RESULTS AND DISCUSSION

The finite element presented herein was employed in the nonlinear

analysis of rectangular plates. The following material properties typical

of advanced fiber-reinforced composites were used in the present study:

Material I: E1/E2 = 25, G12/E2 = 0.5, G23/E2 
= 0.2, v 12 = 0.25

(5.1)

Material II: E1/E2 = 40, G12/E2 = 0.6, G23/E2 = 0.5, v12 = 0.25

It was assumed that Gl3  G23 and v12 = l3- A value of 5/6 was used for
132 23

the shear correction coefficients, k4 = k (see Whitney 31]). All of the

computations were carried on an IBM 370/158 computer.

To show the effect of the reduced integration, and to illustrate the

accuracy of the present element, results of the linear analysis are presented

for four-layer (equal thickness) cross-ply (0°/90°/90°/0o) square plate

constructed of material I. The plate is subjected to sinusoidal distribu-

tion of transverse loading, and is assumed to be "simply-supported" in the

following sense (SS-l):

uo(x,O) = uo(x,b) = 0, N2 (xO) = N2(x,b) = 0

vo(0,y) = vo(a,y) 0 0, Nl(O,y) : Nl(a,y) : 0 ,

w(x,O) = w(x,b) = w(O,y) = w(a,y) = 0 , (5.2)

S x(X,O) = Px(xb) 0 0, M2 (xO) = M2(x,b) : 0 ,

iy(O,y) = 'y (a,y) = 0, Ml (O ,y) = M,(a,y) 0

Of course, in the finite-element method only the essential boundary condi-

tions (i.e., those on u, v, w, 'x and py) are imposed after the assembly

4 of element equations. The finite-element solution is compared with the

closed-form solution [20], and the 3-D elasticity solution of Pagano and

A,_ .



Hatfield [5] in Figure 1. It is clear from the figure that nondimensionalized

deflection obtained by 2 by 2 mesh of linear elements is very sensitive to

the integration (i.e., reduced and full integration) in the thin-plate range

(i.e., a/h > 20). However, the integration has virtually no noticeable

effect in the thick-plate range, or for quadratic elements. The solutions

obtained using the quadratic elements (with reduced and full integration)

are not plotted in Figure 1 due to their closeness to the closed-form solu-

tion. The solutions (i.e., deflections and stresses) obtained by various

elements, meshes, and integrations are reported in tabular form in F20]. The

solution obtained by the 4 by 4 mesh of quadratic elements is in excellent

agreement (indeed, to the third decimal point) with the closed-form solution.

The stresses a- and u- were computed at the Gauss point x = y = 0.0625 (closex y
to the center of the plate) at z = ±h/2, and ±h/4, respectively.

Figure 1 also shows the nondimensionalized deflection for four-layer,

angle-ply (45°/-45°/45°/-45°) square plate (material II) under sinusoidal

loading. The boundary conditions used are of simply-supported (SS-2) type:

uo(0,y) = Uo(a,y) = 0 , N6 (0,y) = N6(a,y) = 0

v0(x,O) = v0(x,b) = 0 , N6 (xO) = N6(x,b) = 0

w(x,O = w(x,b) = w(O,y) = w(a,y) : 0 , (5.3)

tx(XO) = Px(x,b) = 0 , M2 (xO) = M2(x,b) = 0

y (0,y) = y (a,y) = 0 , Ml (0,y) = Ml (a,y) = 0

* Again, the finite-element solution (obtained by using 2 x 2 mesh of eight-

node quadratic elements with reduced integration: 2Q8-R) is in close agree-

ment with the closed-form solution.
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18 ,

0 3-D Elasticity Solution [5]

16 - Closed-Form Solution [20]

oou,&A Finite-Element Solutions

AP = Angle-Ply; material II, SS-2
14 ! CP = Cross-Ply; material I, SS-1

R = Reduced; F = Full Integration

12 
CP(CP, 4x4Q-R)

0
C" ,I

- I
27 (CP, 4x4Q-R)

__8

mE2U' (cP, 4x4Q-R)

c (CP, 2x2L-R)

0_ (CP, 2x2L-R)

20

2' ,, 5-,__ . _ _ _ _

A (AP, 2x2Q-R)
I I * I * -.7

alt 10 20 30 40 50

Figure 1. Comparison of the exact closed-form solution and
finite-element solution for four-layer (0'/90'/90./00),
450/-450/450/451) square plates under sinusoidal loading.

,I

.i .'
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25 -20

20 // Closed-Form Solution 5

0 FEM (0d/900/900/00); SS-10

~ 15~ i7 FEM (450/-450,/-/10.

8 layers); SS-2

13/
10 -2x2Q-R5

alt 10 20 30 40 50

Figure 2. omparison of the closed-form and finite
element solution for nondimensionalized
fundamental frequencies square plates
(material 10).

12.

8.

a ~ Wang [34]
o 2x2L (NDF = 3)

0 2x2Q (NOF = 5)

P -* 50 100 150 200 250

Figure 3. Comparison of the nondiriensionalized stress
for simply supported (SS-3), isotropic (,v 0.3)
square plate under uniform loading.
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Figure 2 shows the nondimensionalized fundamental frequency for four-

layer, cross-ply (0o/90'/900/00), and eight-layer, angle-ply (450/-450/+ /- ... )

square plates of material II. The support conditions for the cross-ply plate

were assumed to be those in SS-1, and the support conditions used for angle-

ply plate were those in SS-2. Results for both of the cases were obtained

using mesh 2Q8-R. The finite-element solutions are gratifyingly close to

the exact closed-form solutions.

Having established the credibility of the finite element developed herein

for the linear analysis of layered composite plates, we now employ the element

in the nonlinear analyses. First, results are presented for single-layer

isotropic square plate under uniform loading. The essential boundary condi-

tions used are:

simply-supported (SS-3): u = v = w = 0 on all edges.

clamped (CC-l): u = v = w % 0 on all edges,
(5.4)

x 0 along edges parallel to x-axis,

y= 0 along edges parallel to y-axis.

Figures 3 to 5 show the nondimensionalized deflection, w = w/h, and non-

dimensionalized stress, a = ca2/Eh2 , as a function of the load parameter,

P = P a4/Eh4 for clamped (CC-l) square plate, and simply-supported (SS-3)

square plate, respectively. The results are compared with the Ritz solution

of Way [32], doutle Fourier-series soluCion of Levy [33], the finite-dif-

ference solution of Wang [34], the Galerkin solution of Yamaki [35], and

the displacement finite-element solution of Kawai and Yoshimura [36]. Finite-

element solutions were computed for the five degrees of freedom (NDF = 5),

and for three degrees of freedom (NDF = 3); in the latter case, the in-

plane displacements were suppressed. Tbe present solutions are in good

agreement with the results of other investigators. Since suppressing the
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2.0

'(3

1--

1.2 /. .

/ "o 2x2L (NDF = 3)

ht1 * 2x2L (NOF = 5)
0.8 0.8/ 2x2Q (NDF = 3)

/ *2x2Q (NDF = 5)

- Yamaki [35]
0.4 -.- Levy [33]

-- Wang [34]

0 * I * I I I I

P 50 100 150 200 250

Figure 4. Comparison of the nondimensionalized deflection for
simply-supported (SS-3), isotropic (v = 0.3) square
plate under uniformly distributed pressure load.

0
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2.0

- Yamaki [35] 815
Way [32] 85

1.6 -- Kawai and Yoshimura [36]e

1.2-8

w h

0.8- /, o 2x2L (NOF =3)
* 2x2L (NOF = 5)

13 2x2Q (NDF = 5)

0.4- 0/ 2x2Q (NDF =3)

P 50 100 150 200 250

Figure 5. Comparison of the nondiriensionalized deflection
* for clamped (CC-i), isotropic (v = 0.3) square

plate under uniformly distributed pressure load.



17

in-plane displacements stiffens the plate, the deflections are smaller and

stresses are larger than those obtained by including the in-plane displace-

ments. Solutions of the other investigators were read from the graphs

presented in their papers.

Next, results of the large-deflection bending analysis of layered com-

posite,thin (a/h = 40) plates are presented. Figure 6 shows the non-dimen-

sionalized deflection versus the load parameter for two-, and six-layer,

anti-symmetric (00/90/0°0/...) cross-ply rectangular plates of material II,

subjected to uniform loading. The plate is assumed to be clamped (CC-2)

in the following sense:

w = x = 0 along edges parallel to y-axis,

w = Py = 0 along edges parallel to x-axis.

The present solution is in good agreement, for various aspect ratios, with

the perturbation solution of Chia and Prabhakara [27]. Due to lack of

tabulated results in [27], the relative differences in the two solutions

cannot be discussed. It is clear that the nonlinear load-deflection curve

is not deviated so much from the linear load-deflection line.

Figure 7 shows similar results for two-, and six-layer, angle-ply

(450/-450/-/+...), and clamped (CC-2) rectangular plate (material II) subjected

to uniform loading. Again, the present result is in close agreement with

that of Chia and Prabhakara [28]. The nondimensionalized stress, x, for

the cross-ply and anale-ply plates discussed above is plotted against the

load parameter in Figure 8.

4. 1j
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3 0 Two-Layer (00/900) a/b 2-.3 0 - .. _0,0 9 / / 9 ° . ) ~ . .
Six-Layer (Oa/900/oO/900' o
(alt =40)

20 0

20a/b = 1
00

* a/b 1

2 4 6 8 10
= (P (2b/h) /E2)l

2

Figure 6. Load-deflection curves for antisymmetric cross-ply
clamped (CC-2), rectangular plates (material II)
under uniform loading

30 , I ,

-o- Two-layer (45'/-450) a/b = I

20 Six-Layer (45°I-45'/-/...0

(a/t = 40)w
• b~1.5100

0 * K-"a/b = 1

2 4 6 8 10

(P = (P°(2b/h)
4/E2)102

Figure 7. Load-deflection curves for antisymmetric angle-ply
clamped (CC-2), rectangular plates (material II)
under uniform loading.
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The effect of the transverse shear strain on the deflection and stresses

on the load-deflection, and load-stress curves is shown in Fig. 9. Note

that the deflection for a/h = 10 is about 30% larger than that for a/h = 100,

at P = 10. That is, the deflections predicted by the classical thin-plate

theory are lower than those predicted by the shear deformable theory.

Figure lOa shows the ratio of nonlinear to linear fundamental frequencies

versus the amplitude-to-thickness ratio for two-layer angle-ply (6/-e),

clamped (CC-2) square plate of material II. The side-to-thickness ratio (a/h)

was taken to be 40 (i.e., thin plate). Similar results are presented in

Fig. lOb for two-layer, cross-ply (00/900), thick rectangular plates of

material II. The boundary conditions used were simply-supported (SS-I),

and clamped (CC-3):

u = W = x = 0 along edges parallel to y-axis (-. (5.6)

v = w = * = 0 along edges parallel to x-axis

The side-to-thickness ratio used in this case was, b/h = 10 (i.e., thick

plate). Since the present boundary conditions are somewhat different from

those used by Chia and Prabhakara [28], the present solutions do not coincide

with those in [28].

6. SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE RESEARCH

A finite-element model is developed based on the combined theory of

Yang, Norris, and Stavsky [16] and von Karman. That is, the model accounts

for the transverse shear strain, and large rotations. Numerical results

- are presented for linear and nonlinear deflections, stresses, and natural

frequencies of rectangular plates subjected to various edge conditions. The

finite-element solutions are compared with the exact closed-form solutions
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- I I I

10 Angle-ply

o Cross-ply 1

N. 7.5

a/b 1.5

Ox 5 a/b

x 0
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in the linear case, and with the perturbation solution in the nonlinear case.

The finite-element solutions are found to be in excellent agreement

with the exact closed-form solutions in the linear analysis. In the nonlinear

analysis, the finite-element solutions are in fair agreement with the pertur-

bation solution; of course, there is no proof that the perturbation solution

is close to the exact. The load-deflection curve in the shear deformable

theory does not deviate much from the linear theory, when compared to the

load-deflection curve in the von Karman theory.

The finite-element developed herein is algebraically simple, and in-

volves fewer degrees of freedom per element compared to traditional finite

elements. Application of the present element (or an element based on the

combined theory) to the following problem areas, at this writing, is either

in development or awaiting:

Transient analysis of layered composite plates (linear as well as

nonlinear)

• Transient analysis of bimodulus (see [37-40]) composite plates

(linear and nonlinear)

* Forced vibration of ordinary and bimodulus composite plates

• Static and transient (linear and nonlinear) analysis of plates with

cut-outs

• All of the above for cylindrical and doubly-curved thick shells [41].
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